Skip to main content
Log in

Seedling sulfide sensitivity among plant species colonizing Phragmites-infested wetlands

  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Seedling establishment is an important means of re-colonizing herbicide-treated and burned Phragmites australis marshes and of filling in newly created or naturally forming marshes. Knowing the differential sensitivity of the various species to sulfide better enables us to predict which plants are likely to colonize given areas (i.e., be it desirable species or P. australis). This study focuses on the sulfide sensitivity of the seedlings of five plant species that may re-colonize the cleared marsh surface either from wild seed stock or introduced propagules: Spartina alterniflora, Spartina patens, Setaria magna, Atriplex triangularis, and P. australis. Seedlings were grown in culture tubes in semi-solid agar media containing Hoagland’s nutrients; sulfide treatments included levels of sulfide from 0 to 8 mM. Parameters measured included number of leaves, number of lateral roots, shoot length, root length, leaf length, and biomass. Setaria magna proved to be the most sensitive to sulfide, followed in order by A. triangularis, S. patens, P. australis, and S. alterniflora. Differences in edaphic sulfide are not likely to be helpful in favoring S. magna, A. triangularis, or S. patents over P. australis. Phragmites australis was compared to S. alterniflora in a second experiment with six concentrations of sulfide between 0 and 2.0 mM. Results indicated that sulfide levels between 0.4 and 0.9 mM would favor seedling establishment of S. alterniflora over P. australis, and at 0.9 mM, S. alterniflora seedlings would have the decided advantage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Armstrong, J., F. Afreen-Zobayed, and W. Armstrong. 1996. Phragmites die-back: Sulfide- and acetic acid-induced bud and root death, lignifications, and blockages within aeration and vascular systems. New Phytologist 134:601–614.

    Article  CAS  Google Scholar 

  • Bart, D. and J. M. Hartman. 2000. Environmental determinants of Phragmites australis expansion in a New Jersey salt marsh: an experimental approach. Oikos 89:59–69.

    Article  Google Scholar 

  • Carlson, P. R., Jr. and J. Forrest. 1982. Uptake of dissolved sulfide by Spartina alterniflora: Evidence from natural sulfur isotope abundance ratios. Science 216:633–635.

    Article  CAS  PubMed  Google Scholar 

  • Chambers, R. M. 1997. Porewater chemistry associated with Phragmites and Spartina in a Connecticut tidal marsh. Wetlands 17: 360–367.

    Google Scholar 

  • Chambers, R. M., L. A. Meyerson, and K. Saltonstall. 1999. Expansion of Phragmites australis into tidal wetlands of North America. Aquatic Botany 64:261–273.

    Article  Google Scholar 

  • Chambers, R. M., T. J. Mozdzer, and J. C. Ambrose. 1998. Effects of salinity and sulfide on the distribution of Phragmites australis and Spartina alterniflora in a tidal saltmarsh. Aquatic Botany 62: 161–169.

    Article  CAS  Google Scholar 

  • Chambers, R. M., D. T. Osgood, and N. Kalapasev. 2002. Hydrologic and chemical control of Phragmites growth in tidal marshes of SW Connecticut, USA. Marine Ecology Progress Series 239: 83–91.

    Article  Google Scholar 

  • Havill, D. C., A. Ingold, and J. Pearson. 1985. Sulphide tolerance in coastal halophytes. Vegetatio 62:279–285.

    Article  Google Scholar 

  • Hoagland, D. R. and D. I. Arnon. 1950. The water-culture method for growing plants without soil. California Agricultural Experiment Station Circular 347:1–39.

    Google Scholar 

  • Jones, W. L. and W. C. Lehman. 1987. Phragmites control and revegetation following aerial applications of glyphosate in Delaware. p. 185–199. In W. R. Whitman and W. H. Meredith (eds.) Waterfowl and Wetlands Symposium: Proceedings of a Symposium on Waterfowl and Wetlands Management in the Coastal Zone of the Atlantic Flyway. Delaware Coastal Management Program, Delaware Department of Natural Resources and Environmental Control, Dover, DE, USA.

    Google Scholar 

  • Koch, M. S., I. A. Mendelssohn, and K. L. McKee. 1990. Mechanism for the hydrogen sulfide-induced growth limitation in wetland macrophytes. Limnology and Oceanography 35:399–408.

    Article  CAS  Google Scholar 

  • Lee, R. L., D. W. Kraus, and J. E. Doeller. 1999. Oxidation of sulfide by Spartina alterniflora roots. Limnology and Oceanography 44:1155–1159.

    Article  CAS  Google Scholar 

  • Mooring, M. T., A. W. Cooper, and E. D. Seneca. 1971. Seed germination response and evidence for height ecophenes in Spartina alterniflora from North Carolina. American Journal of Botany 58: 48–55.

    Article  CAS  Google Scholar 

  • Morris, J. T., C. Haley, and R. Krest. 1996. Effects of sulfide concentrations on growth and dimethylsulphoniopropionate (DMSP) concentration in Spartina alterniflora. p. 87–95. In R. Kiene, P. Visscher, M. Keller, and G. Kirst (eds.) Biological and Environmental Chemistry of DMSP and Related Sulfonium Compounds. Plenum Press, New York, NY, USA.

    Google Scholar 

  • Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiological Plantarum 72:125–130.

    Google Scholar 

  • Osgood, D. T., M. C. F. V. Santos, and J. C. Zieman. 1995. Sediment physico-chemistry associated with natural marsh development on a storm-deposited sand flat. Marine Ecology Progress Series 120:271–283.

    Article  CAS  Google Scholar 

  • Pezeshki, S. R., S. Z. Pan, R. D. DeLaune, and W. H. Patrick, Jr. 1988. Sulfide-induced toxicity: Inhibition of carbon assimilation in Spartina alterniflora. Photosynthetica 22:437–442.

    CAS  Google Scholar 

  • Portnoy, J. W. and I. Valiela. 1997. Short-term effects of salinity reduction and drainage on salt-marsh biogeochemical cycling and Spartina (cordgrass) production. Estuaries 20:569–578.

    Article  CAS  Google Scholar 

  • Seliskar, D. M., J. L. Gallagher, D. M. Burdick, and L. A. Mutz. 2002. The regulation of ecosystem functions by ecotypic variation in the dominant plant: a Spartina alterniflora salt-maarsh case study. Journal of Ecology 90:1–11.

    Article  Google Scholar 

  • Teal, J. M. and B. L. Howes. 1996. Interannual variability of a salt-marsh ecosystem. Limnology and Oceanography 41:802–809.

    Google Scholar 

  • Weinstein, M. P., J. M. Teal, J. H. Balletto, and K. A. Strait. 2001. Restoration principles emerging from one of the world’s largest tidal marsh restoration projects. Wetlands Ecology and Management 9:387–407.

    Article  Google Scholar 

  • Wijte, A. H. B. M. and J. L. Gallagher. 1996a. Effect of oxygen availability and salinity on early life history stages of salt marsh plants. I. Different germination strategies of Spartina alterniflora and Phragmites australis (Poaceae). American Journal of Botany 83:1337–1342.

    Article  Google Scholar 

  • Wijte, A. H. B. M. and J. L. Gallagher. 1996b. Effect of oxygen availability and salinity on early life history stages of salt marsh plants. II. Early seedling development advantage of Spartina alterniflora over Phragmites australis (Poaceae). American Journal of Botany 83:1343–1350.

    Article  Google Scholar 

  • Woodhouse, W. W. 1979. Building salt marshes along the coasts of the continental United States. U.S. Army Corps of Engineers, Coastal Engineering Research Center, Belvoir, VA, USA. Special Report 4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seliskar, D.M., Smart, K.E., Higashikubo, B.T. et al. Seedling sulfide sensitivity among plant species colonizing Phragmites-infested wetlands. Wetlands 24, 426–433 (2004). https://doi.org/10.1672/0277-5212(2004)024[0426:SSSAPS]2.0.CO;2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1672/0277-5212(2004)024[0426:SSSAPS]2.0.CO;2

Key Words

Navigation